
SOLUTION OF ALGEBRA-II MID SEMESTRAL EXAM, M.MATH,
2013-14

Solution to question 1

i) Consider the algebraic closure Q̄ of Q in C. Then the n-th roots of 2 are there in Q̄
for each n. Now the degree of the extension [Q( n

√
2) : Q] is n. Therefore the degree of

the extension Q̄ over Q is greater than or equal to n for each n, hence it cannot be finite.

Therefore Q̄ is an algebraic extension of Q which is not finite.

ii)An algebraic field extension K over F is said to be normal if it is the splitting field of

a family of polynomials in F [X]. In particular if K is finite and is the splitting field of a

polynomial then it is normal. This is because any finite field extension is algebraic.

iii)Consider the polynomial x2 over F2. Then derivative of x2 is 2x which is 0. But the

polynomial x2 is reducible.

iv)F ⊂ L ⊂ K be such that L|F is Galois and K|L is Galois. Consider the extension

Q ⊂ Q(
√

2) ⊂ Q(
4
√

2)

then Q(
√

2)|Q and Q( 4
√

2)|Q(
√

2) are both Galois. This is because the automorphism

groups Aut(Q(
√

2)|Q) and Aut(Q( 4
√

2)|Q(
√

2)) are both Z2 and the order of the auto-

morphism group coincides with the degree of extension. Now the degree of extension

Q( 4
√

2) over Q is 4. The roots of x4 − 2 which belongs to Q( 4
√

2) are only ± 4
√

2. So there

are only two automorphisms of the field extension Q( 4
√

2) over Q. Hence the extension is

not Galois.

Solution to question 2

i)Please see [DF] part IV, proposition 30.

ii)Let f(x) in Q[x] be a polynomial which is irreducible over Q. Let F be the splitting

field of f(x) over Q. We have to prove that if [F : Q] is odd then all roots of f(x) are

real. We proceed by induction on degree of f(x). If the degree is 1, then f definitely has

a real root. Now first we prove that any odd degree polynomial f(x) in R[x] has a real

root. Consider a root α of f(x) and let mα(x) be the minimal polynomial of α. Then we

have that deg(mα(x)) = [R(α) : R]. But R(α) is a subfield of C and [C : R] = 2. So it

follows that deg(mα(x)) is two or it is one. So this implies that if α is a root of f then ᾱ

is also a root of f(x), where ᾱ denote the conjugate of α. But since degree of f is odd,

there must exists a real root. Let α be that root. Now we can write f(x) to be equal to

(x− α)f1(x). Since [K : Q] is odd the degree of f1(x) is odd and is strictly less than the

degree of f(x), so it has a real root. Continuing this process we achieve that all roots of

f(x) are real.
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Solution of problem 3

To prove that Q(ζn)|Q is of degree φ(n) over Q, we prove that the cyclotomic polynomial

Φn(x) is irreducible and of degree φ(n) in Z[x]. φ(n) denote the Euler’s φ function.

Since

Φn(x) =
∏

1≤a≤n,(a,n)=1

(x− ζan)

we have that the degree of Φn(x) is φ(n). Now suppose that

Φn(x) = f(x)g(x)

where f is irreducible. Suppose that ζ is primitive n-th root of unity and it is a root of

f(x). Then consider p a prime such that p does not divide n. Then ζp is a root of Φn(x)

so it is a root of either f or g. Suppose that ζp is a root of g. Then g(ζp) = 0. So ζ is a

root of g(xp). Since f is the minimal polynomial of ζ, we have

g(xp) = f(x)h(x)

reducing modulo p we get that

(ḡ(x))p = ¯f(x) ¯g(x) ,

in Fp[x]. So we have factor common in ¯g(x) and ¯f(x). Also observe that

¯g(ζ)
p

= 0

so ¯g(ζ) = 0. So it follows that Φn(x) has a multiple root. This contradicts to the fact

that when p is a prime not dividing n, then all roots of xn− 1 are distinct. So ζp is a root

of f(x). So now write an integer a co-prime to n as p1. · · · .pk. Then we get that

(ζp1)p2

is a root of f(x) and so ζa is a root of f(x) for all integer a between 1 to n, which are

coprime to n. So f(x) is of degree φ(n), so Φn(x) is irreducible. So we get that the degree

of extension Q(ζn) over Q is φ(n).

Solution of problem 4

a) Let K|F is a finite Galois extension. Suppose that a ∈ K is such that σ(a) 6= a for

all σ 6= 1 in Gal(K|F ). We have to prove that F (a) = K. Let ma(x) be the minimal

polynomial of a. Then observe that for all σ, σ(a) is a root distinct from a of ma(x). So

ma(x) has |Gal(K|F )| many distinct roots. So the degree of ma(x) is equal to |Gal(K|F )|
which is equal to [K : F ]. On the other hand degree of ma(x) is equal to [F (a) : F ] and

F (a) is contained in K, so K = F (a).

b)Let ζ be a primitive 8-th root of unity over Q. So the extension Q(ζ) is of degree

φ(8) = 4. Now we have the fourth root of unity contained in Q(ζ). So Q(i) is inside Q(ζ).

Also we can check that

ζ + ζ7 =
√

2 .
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So Q(i,
√

2) = Q(ζ) . Now suppose p an odd prime such that
√
p in Q(ζ). Then

√
p = a

√
2

where a is in Q. Squaring the above we get that

p = 2a2

now write a = m/n such that m,n are relative prime, then the above becomes

pn2 = 2m2 .

Suppose that n is odd then the left hand side is odd but the right hand side is even, which

is absurd. Suppose that n is even, write n = 2k. Then we have that

2pk2 = m2

here the left hand side is even but the right hand side is odd. So again we have something

absurd. So
√
p is not in Q(ζ) for an odd prime p.

ii) We have Q(ζ,
√
p) is an extension of degree 8 over Q, since it is of degree 2 over Q(ζ).

Now Q(ζ +
√
p) is in Q(ζ,

√
p). Now we have to prove that ζ +

√
p has the minimal

polynomial of degree 8. If it is not of degree 8 and strictly less then ζ will satisfy a

polynomial of degree strictly less than 8, which is not possible. So the degree must atleast

be 8, and since Q(ζ,
√
p) is of degree 8 over Q, the degree of the minimal polynomial of

ζ +
√
p is equal to 8. So we get that

Q(ζ,
√
p) = Q(ζ +

√
p) .

Solution of problem 5

a) Statement of the fundamental theorem of Galois theory:

Let K|F is a Galois extension and let G = Gal(K|F ) be the Galois group of K|F .

Then there is a order reversing one-to-one correspondence between the subfields E of K

containing F , and subgroups H of G. Where a subfield E of K containing F corresponds

to the subgroup HE of elements of G fixing E, and a subgroup H of G corresponds to the

fixed field EH of H. Moreover if E1 ⊂ E2, then we have HE2 ⊂ HE1 .

[K : E] = |HE|, [E : F ] = |G/H| .

K|E is always Galois with HE the Galois group. E|F is Galois if and only if HE is a

normal subgroup of G. If E1, E2 corresponds to H1, H2, then E1 ∩E2 corresponds to the

subgroup of G generated by H1, H2 and E1E2 corresponds to the subgroup H1 ∩H2.

b) We have Ki−1 ⊂ Ki implies that Hi ⊂ Hi−1. So embeddings σ, σ′ of Ki are the same

when σ′σ−1 is identity on Ki, hence σ′σ−1 is in Hi. So we have the bijection of cosets of

Hi in Hi−1 with the embeddings of Ki, that is all σ which takes Ki to Ki. So we have

embeddings of Ki over Ki−1 is |Hi−1/Hi| = [Ki : Ki−1] . Now the embeddings of Ki over

Ki−1 contains Aut(Ki|Ki−1). So Ki|Ki−1 is Galois if and only if

Aut(Ki|Ki−1) = [Ki|Ki−1] = |Hi−1/Hi| .
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So any embedding is actually an automorphism of Ki. That is

σ(Ki) = Ki

for all embedding σ of Ki. Now the subgroup of Hi−1 fixing σ(Ki) is σHiσ
−1. This is

because

σhσ−1(σα) = σ(hα) = σα .

So σHiσ
−1 fixes σ(Ki). The group fixing σ(Ki) has order equal to the degree of F over

σ(Ki), which is same as F over Ki, which is same as order of Hi and of σHiσ
−1. So we

have that

σHiσ
−1

fixes σ(Ki). So for σ in Hi−1, we have σ(Ki) = Ki if and only if σHiσ
−1 = Hi. So we

have Hi is normal in Hi−1 if and only if Ki|Ki is Galois and by the above discussion we

have

Gal(Ki|Ki−1) ∼= Hi−1/Hi .

Solution of problem 6

a) K is a finite separable extension normal extension of F and L1, L2 are normal extensions

of F in K. Since K is eparable and finite hence L1, L2 are finite and separable extension.

So we get that L1 = F (α1, · · · , αn) and L2 = F (β1, · · · , βm). The smallest extension

containing L1, L2 and contained in K is given by

F (α1, · · · , αn, β1, · · · , βm) .

Now since L1 is a separable extension of F , we can choose αi in such a way that each

αi satisfies a separable polynomial mαi
(x), and mαi

splits completely into linear factors

in L1. Similarly we can choose βj such that each βj satisfies a separable polynomial

mβj(x) which splits completely in L2. Then the family of polynomials mαi
(x),mβj(x)

splits completely in L, which is the smallest subfield of K containing L1, L2.

b) To solve this we prove that Gal(Fpn|F) is isomorphic to (Z/nZ). For that we define

σ : Fpn → Fpn by

σ(α) = αp .

Suppose that

αp = βp

then we have

αp
n

= βp
n

which gives

α = β .

Since the homomorphism σ is injective from Fpn to Fpn , we have σ surjective also. Also

observe that σn = id. Since Fpn is Galois over Fp we have Gal(Fpn|Fp) = Zn. So we take

F240 which has Galois group isomorphic to Z40, which is isomorphic to Z5 × Z8.

Solution of problem 7
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a) The polynomial x4 − 2 can be written as

(x2 +
√

2)(x2 −
√

2)

which can be further factorized as

(x+ i
4
√

2)(x− i 4
√

2)(x+
4
√

2)(x− 4
√

2) .

So the splitting field of x4 − 2 is

Q(
4
√

2, i
4
√

2) .

b) It is a degree 4 extension of Q. Now we have four possibilities where 4
√

2 goes to namely,
4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2 Hence the Galois group is of order 4.

C) The Galois group is Z4.

d) The intermediate subfields are Q( 4
√

2) and Q(i 4
√

2).

e) Both are normal.
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